CUX1 attenuates the apoptosis of renal tubular epithelial cells induced by contrast media through activating the PI3K/AKT signaling pathway

CUX1通过激活PI3K/AKT信号通路减轻造影剂诱导的肾小管上皮细胞凋亡

阅读:8
作者:Rong-Zheng Yue, Jing Wang, Feng Lin, Cong-Jun Li, Bai-Hai Su, Rui Zeng

Conclusion

CUX1 promotes cell proliferation, inhibits apoptosis, and reduces inflammation and oxidative stress in CM-induced HK-2 cells to alleviate CM-induced damage. The mechanism of CUX1 may be correlated with activation of the PI3K/AKT signaling pathway.

Objective

Contrast media (CM) is a commonly applied drug in medical examination and surgery. However, contrast-induced acute kidney injury (CIAKI) poses a severe threat to human life and health. Notably, the CUT-like homeobox 1 (CUX1) gene shows protective effects in a variety of cells. Therefore, the objective of this study was to provide a new target for the treatment of CIAKI through exploring the role and possible molecular mechanism of CUX1 in CIAKI. Method: Blood samples were collected from 20 patients with CIAKI and healthy volunteers. Human kidney 2 (HK-2) cells were incubated with 200 mg/mL iohexol for 6 h to establish a contrast-induced injury model of HK-2 cells. Subsequently, qRT-PCR was used to detect the relative mRNA expression of CUX1; CCK-8 and flow cytometry to assess the proliferation and apoptosis of HK-2 cells; the levels of IL(interleukin)-1β, tumor necrosis factor alpha (TNF-α) and malondialdehyde (MDA) in cells and lactate dehydrogenase (LDH) activity in cell culture supernatant were detect; and western blot to observe the expression levels of CUX1 and the PI3K/AKT signaling pathway related proteins [phosphorylated phosphoinositide 3-kinase (p-PI3K), PI3K, phosphorylated Akt (p-AKT), AKT].

Results

CUX1 expression was significantly downregulated in blood samples of patients with CIAKI and contrast-induced HK-2 cells. Contrast media (CM; iohexol) treatment significantly reduced the proliferation of HK-2 cells, promoted apoptosis, stimulated inflammation and oxidative stress that caused cell damage. CUX1 overexpression alleviated cell damage by significantly improving the proliferation level of HK-2 cells induced by CM, inhibiting cell apoptosis, and reducing the level of LDH in culture supernatant and the expression of IL-1β, TNF-α and MDA in cells. CM treatment significantly inhibited the activity of PI3K/AKT signaling pathway activity. Nevertheless, up-regulating CUX1 could activate the PI3K/AKT signaling pathway activity in HK-2 cells induced by CM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。