Exploring the potential of Huangqin Tang in breast cancer treatment using network pharmacological analysis and experimental verification

通过网络药理学分析和实验验证探索黄芩汤在乳腺癌治疗中的潜力

阅读:6
作者:Ziqiao Zhao #, Yongxia Zhu #, Fangyi Long #, Yu Ma, Qing Tang, Ting Wang

Conclusions

This study provides insights into the potential multi-component and multi-target mechanisms of HQT against BC, suggesting it may achieve therapeutic effects through regulating inflammatory response and cancer-related pathways via the identified active compounds and targets. The findings highlight the importance of integrating traditional medicine with modern approaches for the development of novel cancer therapies.

Methods

Chemical composition and target information of HQT were collected using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Disease-related target genes were obtained from the GeneCards database. Network pharmacological analysis, including construction of compound-disease-target networks and protein-protein interaction networks, was performed. Molecular docking simulations were conducted to evaluate the binding affinity between HQT components and key targets. Experimental validation was carried out using cell viability assays, clone formation assays, flow cytometry, Western blotting, and pathway analysis.

Results

A total of 210 candidate targets were identified. Network analysis revealed STAT3, AKT1, MAPK3 etc. as central targets. Enrichment analysis suggested HQT may exert anti-tumor effects through regulating lipid metabolism and inflammation related pathways. Molecular docking showed that the key compounds baicalein, wogonin, kaempferol and quercetin all bound effectively to MAPK1. The binding of baicalein to IL6 and naringenin to TNF-α was also relatively stable. The experimental results demonstrated that HQT effectively inhibited the proliferation of breast cancer cells, with IC50 values of 2.334 mg/mL and 1.749 mg/mL in MCF-7 cells at 24 h and 48 h, and IC50 values of 1.286 mg/mL and 1.496 mg/mL in MDA-MB-231 cells at 24 h and 48 h, respectively. Furthermore, HQT induced cell cycle arrest at the G2/M phase in breast cancer cells and downregulated the expression of related proteins including CDK1, Cyclin B1, CDK2, and Cyclin E. Additionally, HQT promoted apoptosis in breast cancer cells by upregulating the expression of Bak and CC-3, while downregulating the expression of Bcl-2. Notably, HQT also exhibited regulatory effects on the HIF-1 signaling pathway. Conclusions: This study provides insights into the potential multi-component and multi-target mechanisms of HQT against BC, suggesting it may achieve therapeutic effects through regulating inflammatory response and cancer-related pathways via the identified active compounds and targets. The findings highlight the importance of integrating traditional medicine with modern approaches for the development of novel cancer therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。