PSD-93 mediates the crosstalk between neuron and microglia and facilitates acute ischemic stroke injury by binding to CX3CL1

PSD-93 介导神经元和小胶质细胞之间的串扰,并通过与 CX3CL1 结合促进急性缺血性中风损伤

阅读:6
作者:Qingxiu Zhang, Lei He, Mo Chen, Hui Yang, Xiaowei Cao, Xiaomei Liu, Qi Hao, Zhengwei Chen, Tengfei Liu, Xiu-E Wei, Liangqun Rong

Abstract

Post-synaptic density 93 (PSD-93) mediates glutamate excitotoxicity induced by ischemic brain injury, which then induces microglial inflammatory response. However, the underlying mechanisms of how PSD-93 mediates the crosstalk between neurons and microglia in the post-synaptic dense region remain elusive. CX3 chemokine ligand 1 (CX3CL1) is a chemokine specifically expressed in neurons while its receptor CX3CR1 is highly expressed in microglia. In this study, we examined the interaction of PSD-93 and CX3CL1 in the crosstalk between neurons and microglia in acute ischemic stroke. We utilized male C57BL/6 mice to establish the middle cerebral artery occlusion model (MCAO) and designed a fusion small peptide Tat-CX3CL1 (357-395aa) to inhibit PSD-93 and CX3CL1 interaction. The combination peaks of PSD-93 and CX3CL1 at 6 hr after I/R were observed. The binding sites were located at the 420-535 amino acid sequence of PSD-93 and 357-395 amino acid sequence of CX3CL1. Tat-CX3CL1 (357-395aa) could inhibit the interaction of PSD-93 and CX3CL1 and inhibited the pro-inflammatory cytokine IL-1β and TNF-α expression and provided neuroprotection following reperfusion. Together, these data suggest that PSD-93 binds CX3CL1 to activate microglia and initiate neuroinflammation. Specific blockade of PSD-93-CX3CL1 interaction reduces I/R induced neuronal cell death, and provides a new therapeutic target for ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。