Elevated dual specificity protein phosphatase 4 in cardiomyopathy caused by lamin A/C gene mutation is primarily ERK1/2-dependent and its depletion improves cardiac function and survival

层蛋白 A/C 基因突变引起的心肌病中双特异性蛋白磷酸酶 4 升高主要依赖于 ERK1/2,其消耗可改善心脏功能和生存率

阅读:7
作者:Jason C Choi, Wei Wu, Elizabeth Phillips, Robin Plevin, Fusako Sera, Shunichi Homma, Howard J Worman

Abstract

Mutations in the lamin A/C gene (LMNA) encoding the nuclear intermediate filament proteins lamins A and C cause a group of tissue-selective diseases, the most common of which is dilated cardiomyopathy (herein referred to as LMNA cardiomyopathy) with variable skeletal muscle involvement. We previously showed that cardiomyocyte-specific overexpression of dual specificity protein phosphatase 4 (DUSP4) is involved in the pathogenesis of LMNA cardiomyopathy. However, how mutations in LMNA activate Dusp4 expression and whether it is necessary for the development of LMNA cardiomyopathy are currently unknown. We now show that female LmnaH222P/H222P mice, a model for LMNA cardiomyopathy, have increased Dusp4 expression and hyperactivation of extracellular signal-regulated kinase (ERK) 1/2 with delayed kinetics relative to male mice, consistent with the sex-dependent delay in the onset and progression of disease. Mechanistically, we show that the H222P amino acid substitution in lamin A enhances its binding to ERK1/2 and increases sequestration at the nuclear envelope. Finally, we show that genetic deletion of Dusp4 has beneficial effects on heart function and prolongs survival in LmnaH222P/H222P mice. These results further establish Dusp4 as a key contributor to the pathogenesis of LMNA cardiomyopathy and a potential target for drug therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。