Tuning Protein Discrimination Through Altering the Sampling Interface Formed between the Analyte and the OmpG Nanopore

通过改变分析物和 OmpG 纳米孔之间形成的采样界面来调节蛋白质鉴别

阅读:6
作者:Monifa A Fahie, Jonathan Candido, Gisele Andree, Min Chen

Abstract

Nanopore sensors capable of distinguishing homologous protein analytes are highly desirable tools for proteomics research and disease diagnostics. Recently, an engineered outer membrane protein G (OmpG) nanopore with a high-affinity ligand attached to a gating loop 6 showed specificity for distinguishing homologous proteins in complex mixtures. Here, we report the development of OmpG nanopores with the other six loops used as the anchoring point to host an affinity ligand for protein sensing. We investigated how the analyte binding to the affinity ligand located at different loops affects the detection sensitivity, selectivity, and specificity. Our results reveal that analytes weakly attracted to the OmpG nanopore surface are only detectable when the ligand is tethered to loop 6. In contrast, protein analytes that form a strong interaction with the OmpG surface via electrostatic attractions are distinguishable by all seven OmpG nanopore constructs. In addition, the same analyte can generate distinct binding signals with different OmpG nanopore constructs. The ability to exploit all seven OmpG loops will aid the design of a new generation of OmpG sensors with increased sensitivity, selectivity, and specificity for biomarker sensing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。