Oligophrenin1 protects mice against myocardial ischemia and reperfusion injury by modulating inflammation and myocardial apoptosis

Oligophrenin1 通过调节炎症和心肌细胞凋亡保护小鼠免受心肌缺血和再灌注损伤

阅读:5
作者:Christina Niermann, Simone Gorressen, Meike Klier, Nina S Gowert, Pierre Billuart, Malte Kelm, Marc W Merx, Margitta Elvers

Abstract

The Rho family of small GTPases has been analyzed in cardiac physiology and pathophysiology including myocardial infarction (MI) in the last years. Contradictory results show either a protective or a declined effect of RhoA and the RhoA effector Rho-associated protein kinase (ROCK) in myocardial ischemia and reperfusion injury that is associated with cardiomyocyte survival and caspase-3 activation. Cardiac-specific deletion of Rac1 reduced ischemia reperfusion injury in diabetic hearts, whereas cardiomyocyte specific overexpression of active Rac1 predisposes the heart to increased myocardial injury with enhanced contractile dysfunction. GTPase-activating proteins (GAPs) control the activation of Rho proteins through stimulation of GTP hydrolysis. However, the impact of GAPs in myocardial ischemia and reperfusion injury remains elusive. Here we analyzed the role of oligophrenin1 (OPHN1), a RhoGAP with Bin/Amphiphysin/Rvs (BAR) domain known to regulate the activity of RhoA, Rac1 and Cdc42 in MI. The expression of Ophn1, RhoA and Rac1 is strongly upregulated 24h after myocardial ischemia. Loss of OPHN1 induced enhanced activity of Rho effector molecules leading to elevated cardiomyocyte apoptosis and increased migration of inflammatory cells into the infarct border zone of OPHN1 deficient mice. Consequently, echocardiography 24h after myocardial ischemia revealed declined left ventricle function in OPHN1 deficient mice. Our results indicate that OPHN1 mediated regulation of RhoA, Rac1 and Cdc42 is crucial for the preservation of cardiac function after myocardial injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。