Treatment of Infection-Related Non-Unions with Bioactive Glass-A Promising Approach or Just Another Method of Dead Space Management?

使用生物活性玻璃治疗感染相关的骨不连——一种有前途的方法还是仅仅是另一种死腔管理方法?

阅读:4
作者:Holger Freischmidt, Jonas Armbruster, Catharina Rothhaas, Nadine Titze, Thorsten Guehring, Dennis Nurjadi, Robert Sonntag, Gerhard Schmidmaier, Paul Alfred Grützner, Lars Helbig

Abstract

The treatment of infected and non-infected non-unions remains a major challenge in trauma surgery. Due to the limited availability of autologous bone grafts and the need for local anti-infective treatment, bone substitutes have been the focus of tissue engineering for years. In this context, bioactive glasses are promising, especially regarding their anti-infective potential, which could reduce the need for local and systemic treatment with conventional antibiotics. The aim of this study was to investigate the osteoinductive and osteoconductive effects, as well as the anti-infectious potential, of S53P4 using a standardized non-union model, which had not been investigated previously. Using an already established sequential animal model in infected and non-infected rat femora, we were able to investigate bioactive glass S53P4 under realistic non-union conditions regarding its osteoinductive, osteoconductive and anti-infective potential with the use of µCT scans, biomechanical testing and histological, as well as microbiological, analysis. Although S53P4 did not lead to a stable union in the non-infected or the infected setting, µCT analysis revealed an osteoinductive effect of S53P4 under non-infected conditions, which was diminished under infected conditions. The osteoconductive effect of S53P4 remained almost negligible in histological analysis, even 8 weeks after treatment. Additionally, the expected anti-infective effect could not be demonstrated. Our data suggested that S53P4 should not be used in infected non-unions, especially in those with large bone defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。