Biomaterials Based on Carbon Nanotube Nanocomposites of Poly(styrene- b-isobutylene- b-styrene): The Effect of Nanotube Content on the Mechanical Properties, Biocompatibility and Hemocompatibility

基于碳纳米管的聚(苯乙烯-b-异丁烯-b-苯乙烯)纳米复合材料的生物材料:纳米管含量对机械性能、生物相容性和血液相容性的影响

阅读:6
作者:Maria A Rezvova, Pavel A Nikishau, Miraslau I Makarevich, Tatiana V Glushkova, Kirill Yu Klyshnikov, Tatiana N Akentieva, Olga S Efimova, Andrey P Nikitin, Valentina Yu Malysheva, Vera G Matveeva, Evgeniia A Senokosova, Mariam Yu Khanova, Viacheslav V Danilov, Dmitry M Russakov, Zinfer R Ismagilov, 

Abstract

Nanocomposites based on poly(styrene-block-isobutylene-block-styrene) (SIBS) and single-walled carbon nanotubes (CNTs) were prepared and characterized in terms of tensile strength as well as bio- and hemocompatibility. It was shown that modification of CNTs using dodecylamine (DDA), featured by a long non-polar alkane chain, provided much better dispersion of nanotubes in SIBS as compared to unmodified CNTs. As a result of such modification, the tensile strength of the nanocomposite based on SIBS with low molecular weight (Mn = 40,000 g mol-1) containing 4% of functionalized CNTs was increased up to 5.51 ± 0.50 MPa in comparison with composites with unmodified CNTs (3.81 ± 0.11 MPa). However, the addition of CNTs had no significant effect on SIBS with high molecular weight (Mn~70,000 g mol-1) with ultimate tensile stress of pure polymer of 11.62 MPa and 14.45 MPa in case of its modification with 1 wt% of CNT-DDA. Enhanced biocompatibility of nanocomposites as compared to neat SIBS has been demonstrated in experiment with EA.hy 926 cells. However, the platelet aggregation observed at high CNT concentrations can cause thrombosis. Therefore, SIBS with higher molecular weight (Mn~70,000 g mol-1) reinforced by 1-2 wt% of CNTs is the most promising material for the development of cardiovascular implants such as heart valve prostheses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。