Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter

体外肺泡屏障内皮细胞在剂量控制下暴露于柴油机尾气颗粒物时的反应

阅读:8
作者:Sebastian G Klein, Sébastien Cambier, Jennifer Hennen, Sylvain Legay, Tommaso Serchi, Inge Nelissen, Aline Chary, Elisa Moschini, Andreas Krein, Brunhilde Blömeke, Arno C Gutleb

Background

During the last 250 years, the level of exposure to combustion-derived particles raised dramatically in western countries, leading to increased particle loads in the ambient air. Among the environmental particles, diesel exhaust particulate matter (DEPM) plays a special role because of its omnipresence and reported effects on human health. During recent years, a possible link between air pollution and the progression of atherosclerosis is recognized. A central effect of DEPM is their impact on the endothelium, especially of the alveolar barrier. In the present study, a complex 3D tetraculture model of the alveolar barrier was used in a dose-controlled exposure scenario with realistic doses of DEPM to study the response of endothelial cells.

Conclusion

In the present study, we demonstrated the use of a complex 3D tetraculture system together with a state-of-the-art aerosol exposure equipment to study the effects of in vivo relevant doses of DEPM on endothelial cells in vitro. To the best of our knowledge, this study is the first that focuses on indirect effects of DEPM on endothelial cells of the alveolar barrier in vitro. Exposure to DEPM led to significant activation and nuclear translocation of the transcription factor Nrf2 in endothelial cells. The considerably low doses of DEPM had a low but measurable effect, which is in line with recent data from in vivo studies.

Results

Tetracultures were exposed to different doses of DEPM (SRM2975) at the air-liquid-interface. DEPM exposure did not lead to the mRNA expression of relevant markers for endothelial inflammation such as ICAM-1 or E-selectin. In addition, we observed neither a significant change in the expression levels of the genes relevant for antioxidant defense, such as HMOX1 or SOD1, nor the release of pro-inflammatory second messengers, such as IL-6 or IL-8. However, DEPM exposure led to strong nuclear translocation of the transcription factor Nrf2 and significantly altered expression of CYP1A1 mRNA in the endothelial cells of the tetraculture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。