Rapid Identification of Methicillin-Resistant Staphylococcus aureus Using MALDI-TOF MS and Machine Learning from over 20,000 Clinical Isolates

使用 MALDI-TOF MS 和机器学习从 20,000 多个临床分离株中快速鉴定耐甲氧西林金黄色葡萄球菌

阅读:18
作者:Jiaxin Yu, Ni Tien, Yu-Ching Liu, Der-Yang Cho, Jia-Wen Chen, Yin-Tai Tsai, Yu-Chen Huang, Huei-Jen Chao, Chao-Jung Chen

Abstract

Rapidly identifying methicillin-resistant Staphylococcus aureus (MRSA) with high integration in the current workflow is critical in clinical practices. We proposed a matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-based machine learning model for rapid MRSA prediction. The model was evaluated on a prospective test and four external clinical sites. For the data set comprising 20,359 clinical isolates, the area under the receiver operating curve of the classification model was 0.78 to 0.88. These results were further interpreted using shapely additive explanations and presented using the pseudogel method. The important MRSA feature, m/z 6,590 to 6,599, was identified as a UPF0337 protein SACOL1680 with a lower binding affinity or no docking results compared with UPF0337 protein SA1452, which is mainly detected in methicillin-susceptible S. aureus. Our MALDI-TOF MS-based machine learning model for rapid MRSA identification can be easily integrated into the current clinical workflows and can further support physicians in prescribing proper antibiotic treatments. IMPORTANCE Over 20,000 clinical MSSA and MRSA isolates were collected to build a machine learning (ML) model to identify MSSA/MRSA and their markers. This model was tested across four external clinical sites to ensure the model's usability. We report the first discovery and validation of MRSA markers on the largest scale of clinical MSSA and MRSA isolates collected to date, covering five different clinical sites. Our developed approach for the rapid identification of MSSA and MRSA can be highly integrated into the current workflows.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。