High glucose represses the proliferation of tendon fibroblasts by inhibiting autophagy activation in tendon injury

高糖通过抑制肌腱损伤中的自噬激活来抑制肌腱成纤维细胞的增殖

阅读:13
作者:Fu-Chen Song #, Jia-Qin Yuan #, Mei-Dong Zhu, Qi Li, Sheng-Hua Liu, Lei Zhang, Cheng Zhao

Abstract

Diabetic foot ulcer (DFU) is a kind of common and disabling complication of Diabetes Mellitus (DM). Emerging studies have demonstrated that tendon fibroblasts play a crucial role in remodeling phase of wound healing. However, little is known about the mechanism underlying high glucose (HG)-induced decrease in tendon fibroblasts viability. In the present study, the rat models of DFU were established, and collagen deposition, autophagy activation and cell apoptosis in tendon tissues were assessed using Hematoxylin-Eosin (HE) staining, immunohistochemistry (IHC), and TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, respectively. Tendon fibroblasts were isolated from Achilles tendon of the both limbs, and the effect of HG on autophagy activation in tendon fibroblasts was assessed using Western blot analysis, Cell Counting Kit-8 (CCK-8) assay, and flow cytometry. We found that cell apoptosis was increased significantly and autophagy activation was decreased in foot tendon tissues of DFU rats compared with normal tissues. The role of HG in regulating tendon fibroblasts viability was then investigated in vitro, and data showed that HG repressed cell viability and increased cell apoptosis. Furthermore, HG treatment reduced LC3-II expression and increased p62 expression, indicating that HG repressed autophagy activation of tendon fibroblasts. The autophagy activator rapamycin reversed the effect. More importantly, rapamycin alleviated the suppressive role of HG in tendon fibroblasts viability. Taken together, our data demonstrate that HG represses tendon fibroblasts proliferation by inhibiting autophagy activation in tendon injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。