A catalytic role of heparin within the extracellular matrix

肝素在细胞外基质中的催化作用

阅读:7
作者:Maria Mitsi, Kimberly Forsten-Williams, Manoj Gopalakrishnan, Matthew A Nugent

Abstract

We investigated the mechanism by which heparin enhances the binding of vascular endothelial growth factor (VEGF) to the extracellular matrix protein fibronectin. In contrast to other systems, where heparin acts as a protein scaffold, we found that heparin functions catalytically to modulate VEGF binding site availability on fibronectin. By measuring the binding of VEGF and heparin to surface-immobilized fibronectin, we show that substoichiometric amounts of heparin exposed cryptic VEGF binding sites within fibronectin that remain available after heparin removal. Measurement of association and dissociation kinetics for heparin binding to fibronectin indicated that the interaction is rapid and transient. We localized the heparin-responsive element to the C-terminal 40-kDa Hep2 domain of fibronectin. A mathematical model of this catalytic process was constructed that supports a mechanism whereby the heparin-induced conformational change in fibronectin is accompanied by release of heparin. Experiments with endothelial extracellular matrix suggest that this process may also occur within biological matrices. These results indicate a novel mechanism whereby heparin catalyzes the conversion of fibronectin to an open conformation by transiently interacting with fibronectin and progressively hopping from molecule to molecule. Catalytic activation of the extracellular matrix might be an important mechanism for heparin to regulate function during normal and disease states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。