Modulation of Hemostatic and Inflammatory Responses by Leptospira Spp

钩端螺旋体对止血和炎症反应的调节

阅读:7
作者:Mônica L Vieira, Clément Naudin, Matthias Mörgelin, Eliete C Romero, Ana Lucia T O Nascimento, Heiko Herwald

Abstract

Leptospirosis is a worldwide spread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. In severe infections, hemostatic impairments such as coagulation/fibrinolysis dysfunction are frequently observed. These complications often occur when the host response is controlled and/or modulated by the bacterial pathogen. In the present investigation, we aimed to analyze the modulation of the hemostatic and inflammatory host responses by the bacterial pathogen Leptospira. The effects of leptospires and their secreted products on stimulation of human intrinsic and extrinsic pathways of coagulation were investigated by means of altered clotting times, assembly and activation of contact system and induction of tissue factor. We show that both extrinsic and intrinsic coagulation cascades are modulated in response to Leptospira or leptospiral secreted proteins. We further find that the pro-inflammatory mediator bradykinin is released following contact activation at the bacterial surface and that pro-coagulant microvesicles are shed from monocytes in response to infection. Also, we show that human leptospirosis patients present higher levels of circulating pro-coagulant microvesicles than healthy individuals. Here we show that both pathways of the coagulation system are modulated by leptospires, possibly leading to altered hemostatic and inflammatory responses during the disease. Our results contribute to the understanding of the leptospirosis pathophysiological mechanisms and may open new routes for the discovery of novel treatments for the severe manifestations of the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。