Peripheral gating of mechanosensation by glial diazepam binding inhibitor

胶质细胞地西泮结合抑制剂对机械感觉的外周门控

阅读:5
作者:Xinmeng Li, Arthur Silveira Prudente, Vincenzo Prato, Xianchuan Guo, Han Hao, Frederick Jones, Sofia Figoli, Pierce Mullen, Yujin Wang, Raquel Tonello, Sang Hoon Lee, Shihab Shah, Benito Maffei, Temugin Berta, Xiaona Du, Nikita Gamper

Abstract

We report that diazepam binding inhibitor (DBI) is a glial messenger mediating crosstalk between satellite glial cells (SGCs) and sensory neurons in the dorsal root ganglion (DRG). DBI is highly expressed in SGCs of mice, rats, and humans, but not in sensory neurons or most other DRG-resident cells. Knockdown of DBI results in a robust mechanical hypersensitivity without major effects on other sensory modalities. In vivo overexpression of DBI in SGCs reduces sensitivity to mechanical stimulation and alleviates mechanical allodynia in neuropathic and inflammatory pain models. We further show that DBI acts as an unconventional agonist and positive allosteric modulator at the neuronal GABAA receptors, particularly strongly affecting those with a high-affinity benzodiazepine binding site. Such receptors are selectively expressed by a subpopulation of mechanosensitive DRG neurons, and these are also more enwrapped with DBI-expressing glia, as compared with other DRG neurons, suggesting a mechanism for a specific effect of DBI on mechanosensation. These findings identified a communication mechanism between peripheral neurons and SGCs. This communication modulates pain signaling and can be targeted therapeutically.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。