Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles

通过近红外纳米粒子的发光激发增强对深层组织中髓过氧化物酶活性的检测

阅读:6
作者:Ning Zhang, Kevin P Francis, Arun Prakash, Daniel Ansaldi

Abstract

A previous study reported the use of luminol for the detection of myeloperoxidase (MPO) activity using optical imaging in infiltrating neutrophils under inflammatory disease conditions. The detection is based on a photon-emitting reaction between luminol and an MPO metabolite. Because of tissue absorption and scattering, however, luminol-emitted blue light can be efficiently detected from superficial inflammatory foci only. In this study we report a chemiluminescence resonance energy transfer (CRET) methodology in which luminol-generated blue light excites nanoparticles to emit light in the near-infrared spectral range, resulting in remarkable improvement of MPO detectability in vivo. CRET caused a 37-fold increase in luminescence emission over luminol alone in detecting MPO activity in lung tissues after lipopolysaccharide challenge. We demonstrated a dependence of the chemiluminescent signal on MPO activity using MPO-deficient mice. In addition, co-administration of 4-aminobenzoic acid hydrazide (4-ABAH), an irreversible inhibitor of MPO, significantly attenuated luminescent emission from inflamed lungs. Inhibition of nitric oxide synthase with a nonspecific inhibitor, L-NAME, had no effect on luminol-mediated chemiluminescence production. Pretreatment of mice with MLN120B, a selective inhibitor of IKK-2, resulted in suppression of neutrophil infiltration to the lung tissues and reduction of MPO activity. We also demonstrated that CRET can effectively detect MPO activity at deep tissue tumor foci due to tumor development-associated neutrophil infiltration. We developed a sensitive MPO detection methodology that provides a means for visualizing and quantifying oxidative stress in deep tissue. This method is amenable to rapid evaluation of anti-inflammatory agents in animal models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。