Biomimetic SARS-CoV-2 Spike Protein Nanoparticles

仿生 SARS-CoV-2 刺突蛋白纳米颗粒

阅读:6
作者:Alvin Phan, Hugo Avila, J Andrew MacKay

Abstract

COVID-19 is an infectious respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus contains a crucial coat protein that engages with target cells via a receptor binding domain (RBD) on its spike protein. To better study the RBD and its therapeutic opportunities, we genetically engineered a simple fusion with a thermo-responsive elastin-like polypeptide (ELP). These fusions express in Escherichia coli at a high yield in the soluble fraction and were easily purified using ELP-mediated phase separation (79 mg/L culture). Interestingly, they assembled peptide-based nanoparticles (Rh = 71.4 nm), which was attributed to oligomerization of RBDs (25.3 kDa) counterbalanced by steric stabilization by a soluble ELP (73.4 kDa). To investigate their biophysical properties, we explored the size, shape, and binding affinity for the human angiotensin-converting enzyme 2 (hACE2) and cellular uptake. Biomimetic nanoparticles such as these may enable future strategies to target the same cells, tissues, and cell-surface receptors as those harnessed by SARS-CoV-2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。