Rac1 is required for matrix metalloproteinase 13 production by chondrocytes in response to fibronectin fragments

Rac1 是软骨细胞响应纤连蛋白片段产生基质金属蛋白酶 13 所必需的

阅读:5
作者:David L Long, Jeffrey S Willey, Richard F Loeser

Conclusion

Rac1 is required for FN fragment-induced signaling that results in increased MMP-13 production. EGF receptor ligands, which activate Rac, can promote this effect. The presence of active Rac in OA cartilage and the ability of Rac to stimulate MMP-13 production suggest that it could play a role in the cartilage matrix destruction seen in OA.

Methods

Normal human cartilage was obtained from tissue donors and OA cartilage from knee arthroplasty specimens. Rac1 activity was modulated with a chemical inhibitor, by knockdown with small interfering RNA (siRNA), or with constitutively active Rac or dominant-negative Rac adenovirus. Cells were treated with FN fragments, with or without epidermal growth factor (EGF) or transforming growth factor α (TGFα), which are known activators of Rac. Rac1 activity was measured with a colorimetric activity enzyme-linked immunosorbent assay, a pulldown assay, and immunostaining with a monoclonal antibody against active Rac.

Objective

Matrix fragments, including fibronectin (FN) fragments, accumulate during the development of osteoarthritis (OA), stimulating the production of chondrocyte matrix metalloproteinase (MMP). The objective of this study was to determine the role of the small GTPase Rac1 in chondrocyte signaling stimulated by FN fragments, which

Results

Chemical inhibition of Rac1, as well as knockdown by siRNA and expression of dominant-negative Rac, blocked FN fragment-stimulated MMP-13 production, while expression of constitutively active Rac increased MMP-13 production. Inhibition of Rho-associated kinase had no effect. EGF and TGFα, but not FN fragments, increased Rac1 activity and promoted the increase in MMP-13 above that achieved by stimulation with FN fragments alone. Active Rac was detected in OA cartilage by immunostaining.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。