Priming increases the anti-tumor effect and therapeutic window of 177Lu-octreotate in nude mice bearing human small intestine neuroendocrine tumor GOT1

引发可增加177Lu-奥曲肽对携带人小肠神经内分泌肿瘤GOT1的裸鼠的抗肿瘤作用和治疗窗口

阅读:4
作者:Johanna Dalmo, Johan Spetz, Mikael Montelius, Britta Langen, Yvonne Arvidsson, Henrik Johansson, Toshima Z Parris, Khalil Helou, Bo Wängberg, Ola Nilsson, Maria Ljungberg, Eva Forssell-Aronsson

Background

177Lu-[DOTA0, Tyr3]-octreotate (177Lu-octreotate) is used for treatment of patients with somatostatin receptor (SSTR) expressing neuroendocrine tumors. However, complete tumor remission is rarely seen, and optimization of treatment protocols is needed. In vitro studies have shown that irradiation can up-regulate the expression of SSTR1, 2 and 5, and increase 177Lu-octreotate uptake. The

Conclusions

Priming had the best overall anti-tumor effects and also resulted in an increased therapeutic window. Results indicate that potential biomarkers for tumor regrowth may be found in the p53 or JNK signaling pathways. Priming administration is an interesting optimization strategy for 177Lu-octreotate therapy of neuroendocrine tumors, and further studies should be performed to determine the mechanisms responsible for the reported effects.

Results

Priming resulted in a 1.9 times higher mean absorbed dose to the tumor tissue per administered activity, together with a reduced mean absorbed dose for kidneys. Priming gave the best overall anti-tumor effects. Magnetic resonance imaging showed no statistically significant difference in tumor response between treatment with and without priming. Gene expression analysis demonstrated effects on cell cycle regulation. Biological processes associated with apoptotic cell death were highly affected in the biodistribution and dosimetry study, via differential regulation of, e.g., APOE, BAX, CDKN1A, and GADD45A. Conclusions: Priming had the best overall anti-tumor effects and also resulted in an increased therapeutic window. Results indicate that potential biomarkers for tumor regrowth may be found in the p53 or JNK signaling pathways. Priming administration is an interesting optimization strategy for 177Lu-octreotate therapy of neuroendocrine tumors, and further studies should be performed to determine the mechanisms responsible for the reported effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。