A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS

仿生沸石纳米酶通过有效去除锌和 ROS 促进缺血性中风后神经血管单元的神经保护

阅读:6
作者:Zhixuan Huang, Kun Qian, Jin Chen, Yao Qi, Yifeng E, Jia Liang, Liang Zhao

Significance

Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset.

Statement of significance

Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。