Simulated Swine Digestion and Gut Microbiota Fermentation of Hydrolyzed Copra Meal

模拟猪消化和肠道微生物发酵水解椰干粉

阅读:5
作者:Jurairat Rungruangsaphakun, Francis Ayimbila, Massalin Nakphaichit, Suttipun Keawsompong

Abstract

This study aimed to compare the effects of hydrolyzed copra meal (HCM) inclusion at 1% on its in vitro digestibility and the microbiota and cecum fermentation using the gut microbiota of weaned swine, targeting microbial community and short-chain fatty acids (SCF). For this reason, three treatments were considered: control (no copra meal), 1% non-hydrolyzed copra meal (CM), and 1% HCM. Non-defatted copra meal was hydrolyzed and analyzed (reducing sugars and total carbohydrates) in our laboratory. For digestion, microbiota identification, and fermentation assays, fresh fecal samples from two weaned pigs (1 month old) were used. Three replicates of each treatment were employed. HCM was more digestible, with approximately 0.68 g of hydrolysate recovered after simulated digestion compared to 0.82 g of hydrolysate recovered from CM. This was shown by Scanning Electron Microscope (SEM) images. Also, the three swine shared the majority of microbial species identified at the phylum and family levels. There were no differences (p > 0.05) between treatments in the microbial community and SCFA during fermentation. However, higher Chao-1 and Shannon indexes were observed in CM and HCM treatments. HCM was also found to be capable of preserving Actinobacterota and Proteobacteria at the phylum level, while at the family level, both treatments may help Lactobacillaceae, Peptostreptococcaceae, Lachnospiraceae, and Ruminococcaceae survive in the long term. Also, there was a potential trend of increasing acetic acid and butyric acid in the CM and HCM treatments. While HCM shows promise in potentially modulating the gut microbiota of weaned swine, additional research is required to investigate the effects of higher doses of HCM on swine performance parameters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。