Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts

嘌呤受体介导的人类成纤维细胞肌动蛋白细胞骨架重塑

阅读:4
作者:Nanna Goldman, Devin Chandler-Militello, Helene M Langevin, Maiken Nedergaard, Takahiro Takano

Abstract

Earlier studies have shown that activation of adenosine A1 receptors on peripheral pain fibers contributes to acupuncture-induced suppression of painful input. In addition to adenosine, acupuncture triggers the release of other purines, including ATP and ADP that may bind to purine receptors on nearby fibroblasts. We here show that purine agonists trigger increase in cytosolic Ca(2+) signaling in a cultured human fibroblasts cell line. The profile of agonist-induced Ca(2+) increases indicates that the cells express functional P2yR2 and P2yR4 receptors, as well as P2yR1 and P2xR7 receptors. Unexpectedly, purine-induced Ca(2+) signaling was associated with a remodeling of the actin cytoskeleton. ATP induced a transient loss in F-actin stress fiber. The changes of actin cytoskeleton occurred slowly and peaked at 10min after agonist exposure. Inhibition of ATP-induced increases in Ca(2+) by cyclopiazonic acid blocked receptor-mediated cytoskeleton remodeling. The Ca(2+) ionophore failed to induce cytoskeletal remodeling despite triggering robust increases in cytosolic Ca(2+). These observations indicate that purine signaling induces transient changes in fibroblast cytoarchitecture that could be related to the beneficial effects of acupuncture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。