Mechanistic studies of a small-molecule modulator of SMN2 splicing

SMN2 剪接的小分子调节剂的机制研究

阅读:6
作者:Jingxin Wang, Peter G Schultz, Kristen A Johnson

Abstract

RG-7916 is a first-in-class drug candidate for the treatment of spinal muscular atrophy (SMA) that functions by modulating pre-mRNA splicing of the SMN2 gene, resulting in a 2.5-fold increase in survival of motor neuron (SMN) protein level, a key protein lacking in SMA patients. RG-7916 is currently in three interventional phase 2 clinical trials for various types of SMA. In this report, we show that SMN-C2 and -C3, close analogs of RG-7916, act as selective RNA-binding ligands that modulate pre-mRNA splicing. Chemical proteomic and genomic techniques reveal that SMN-C2 directly binds to the AGGAAG motif on exon 7 of the SMN2 pre-mRNA, and promotes a conformational change in two to three unpaired nucleotides at the junction of intron 6 and exon 7 in both in vitro and in-cell models. This change creates a new functional binding surface that increases binding of the splicing modulators, far upstream element binding protein 1 (FUBP1) and its homolog, KH-type splicing regulatory protein (KHSRP), to the SMN-C2/C3-SMN2 pre-mRNA complex and enhances SMN2 splicing. These findings underscore the potential of small-molecule drugs to selectively bind RNA and modulate pre-mRNA splicing as an approach to the treatment of human disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。