Design of a stable ethanologenic bacterial strain without heterologous plasmids and antibiotic resistance genes for efficient ethanol production from concentrated dairy waste

设计一种不含异源质粒和抗生素抗性基因的稳定产乙醇菌株,用于从浓缩乳品废料中高效生产乙醇

阅读:4
作者:Lorenzo Pasotti #, Davide De Marchi #, Michela Casanova, Angelica Frusteri Chiacchiera, Maria Gabriella Cusella De Angelis, Cinzia Calvio, Paolo Magni

Abstract

Engineering sustainable bioprocesses that convert abundant waste into fuels is pivotal for efficient production of renewable energy. We previously engineered an Escherichia coli strain for optimized bioethanol production from lactose-rich wastewater like concentrated whey permeate (CWP), a dairy effluent obtained from whey valorization processes. Although attractive fermentation performances were reached, significant improvements are required to eliminate recombinant plasmids, antibiotic resistances and inducible promoters, and increase ethanol tolerance. Here, we report a new strain with chromosomally integrated ethanologenic pathway under the control of a constitutive promoter, without recombinant plasmids and resistance genes. The strain showed extreme stability in 1-month subculturing, with CWP fermentation performances similar to the ethanologenic plasmid-bearing strain. We then investigated conditions enabling efficient ethanol production and sugar consumption by changing inoculum size and CWP concentration, revealing toxicity- and nutritional-related bottlenecks. The joint increase of ethanol tolerance, via adaptive evolution, and supplementation of small ammonium sulphate amounts (0.05% w/v) enabled a fermentation boost with 6.6% v/v ethanol titer, 1.2 g/L/h rate, 82.5% yield, and cell viability increased by three orders of magnitude. Our strain has attractive features for industrial settings and represents a relevant improvement in the existing ethanol production biotechnologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。