CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: A target for cholangiocarcinoma treatment

肝吸虫相关胆管癌中 CD44 变体依赖性氧化还原状态调节:胆管癌治疗的目标

阅读:5
作者:Malinee Thanee, Watcharin Loilome, Anchalee Techasen, Eiji Sugihara, Shogo Okazaki, Shinya Abe, Shiho Ueda, Takashi Masuko, Nisana Namwat, Narong Khuntikeo, Attapol Titapun, Chawalit Pairojkul, Hideyuki Saya, Puangrat Yongvanit

Abstract

Expression of CD44, especially the variant isoforms (CD44v) of this major cancer stem cell marker, contributes to reactive oxygen species (ROS) defense through stabilizing xCT (a cystine-glutamate transporter) and promoting glutathione synthesis. This enhances cancer development and increases chemotherapy resistance. We investigate the role of CD44v in the regulation of the ROS defense system in cholangiocarcinoma (CCA). Immunohistochemical staining of CD44v and p38(MAPK) (a major ROS target) expression in Opisthorchis viverrini-induced hamster CCA tissues (at 60, 90, 120, and 180 days) reveals a decreased phospho-p38(MAPK) signal, whereas the CD44v signal was increased during bile duct transformation. Patients with CCA showed CD44v overexpression and negative-phospho-p38(MAPK) patients a significantly shorter survival rate than the low CD44v signal and positive-phospho-p38(MAPK) patients (P = 0.030). Knockdown of CD44 showed that xCT and glutathione levels were decreased, leading to a high level of ROS. We examined xCT-targeted CD44v cancer stem cell therapy using sulfasalazine. Glutathione decreased and ROS increased after the treatment, leading to inhibition of cell proliferation and induction of cell death. Thus, the accumulation of CD44v leads to the suppression of p38(MAPK) in transforming bile duct cells. The redox status regulation of CCA cells depends on the expression of CD44v to contribute the xCT function and is a link to the poor prognosis of patients. Thus, an xCT inhibitor could inhibit cell growth and activate cell death. This suggests that an xCT-targeting drug may improve CCA therapy by sensitization to the available drug (e.g. gemcitabine) by blocking the mechanism of the cell's ROS defensive system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。