Controlling the Formation of Two Concomitant Polymorphs in Hg(II) Coordination Polymers

控制 Hg(II) 配位聚合物中两种共存同质异形体的形成

阅读:5
作者:Francisco Sánchez-Férez, Xavier Solans-Monfort, Teresa Calvet, Mercè Font-Bardia, Josefina Pons

Abstract

Controlling the formation of the desired product in the appropriate crystalline form is the fundamental breakthrough of crystal engineering. On that basis, the preferential formation between polymorphic forms, which are referred to as different assemblies achieved by changing the disposition or arrangement of the forming units within the crystalline structure, is one of the most challenging topics still to be understood. Herein, we have observed the formation of two concomitant polymorphs with general formula {[Hg(Pip)2(4,4'-bipy)]·DMF}n (P1A, P1B; Pip = piperonylic acid; 4,4'-bipy = 4,4'-bipyridine). Besides, [Hg(Pip)2(4,4'-bipy)]n (2) has been achieved during the attempts to isolate these polymorphs. The selective synthesis of P1A and P1B has been successfully achieved by changing the synthetic conditions. The formation of each polymorphic form has been ensured by unit cell measurements and decomposition temperature. The elucidation of their crystal structure revealed P1A and P1B as polymorphs, which originates from the Hg(II) cores and intermolecular associations, especially pinpointed by Hg···π and π···π interactions. Density functional theory (DFT) calculations suggest that P1B, which shows Hg(II) geometries that are further from ideality, is more stable than P1A by 13 kJ·mol-1 per [Hg(Pip)2(4,4'-bipy)]·DMF formula unit, and this larger stability of P1B arises mainly from metal···π and π···π interactions between chains. As a result, these structural modifications lead to significant variations of their solid-state photoluminescence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。