Verticillin A Causes Apoptosis and Reduces Tumor Burden in High-Grade Serous Ovarian Cancer by Inducing DNA Damage

轮枝菌素 A 通过诱导 DNA 损伤导致高级别浆液性卵巢癌细胞凋亡并降低肿瘤负担

阅读:5
作者:Amrita Salvi, Chiraz Soumia M Amrine, Julia R Austin, KiAundra Kilpatrick, Angela Russo, Daniel Lantvit, Esther Calderon-Gierszal, Zachary Mattes, Cedric J Pearce, Mark W Grinstaff, Aaron H Colby, Nicholas H Oberlies, Joanna E Burdette

Abstract

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy in women worldwide and the fifth most common cause of cancer-related deaths among U.S. women. New therapies are needed to treat HGSOC, particularly because most patients develop resistance to current first-line therapies. Many natural product and fungal metabolites exhibit anticancer activity and represent an untapped reservoir of potential new agents with unique mechanism(s) of action. Verticillin A, an epipolythiodioxopiperazine alkaloid, is one such compound, and our recent advances in fermentation and isolation are now enabling evaluation of its anticancer activity. Verticillin A demonstrated cytotoxicity in HGSOC cell lines in a dose-dependent manner with a low nmol/L IC50 Furthermore, treatment with verticillin A induced DNA damage and caused apoptosis in HGSOC cell lines OVCAR4 and OVCAR8. RNA-Seq analysis of verticillin A-treated OVCAR8 cells revealed an enrichment of transcripts in the apoptosis signaling and the oxidative stress response pathways. Mass spectrometry histone profiling confirmed reports that verticillin A caused epigenetic modifications with global changes in histone methylation and acetylation marks. To facilitate in vivo delivery of verticillin A and to monitor its ability to reduce HGSOC tumor burden, verticillin A was encapsulated into an expansile nanoparticle (verticillin A-eNP) delivery system. In an in vivo human ovarian cancer xenograft model, verticillin A-eNPs decreased tumor growth and exhibited reduced liver toxicity compared with verticillin A administered alone. This study confirmed that verticillin A has therapeutic potential for treatment of HGSOC and that encapsulation into expansile nanoparticles reduced liver toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。