2-Phenylnaphthyridin-4-one Derivative LYF-11 Inhibits Interleukin-6-mediated Epithelial-to-Mesenchymal Transition via the Inhibition of JAK2/STAT3 Signaling Pathway in MCF-7 Cells

2-苯基萘啶-4-酮衍生物LYF-11通过抑制MCF-7细胞中的JAK2/STAT3信号通路抑制白细胞介素-6介导的上皮-间质转化

阅读:5
作者:Liang-Chih Liu, Yao-Chung Wu, Sheng-Chu Kuo, Chi-Tang Ho, Tzong-DER Way, Shou-Tung Chen

Aim

Breast tumor interleukin-6 (IL-6) level increases with tumor grade, and elevated serum IL-6 correlates with poor survival in patients with breast cancer. Epithelial-mesenchymal transition (EMT) phenotypes are associated with enhanced metastasis and unfavorable clinical outcome in breast cancer. Therefore, we examined whether IL-6 induced EMT phenotype characterized in breast cancer cells. Materials and

Conclusion

Our results suggest a connection between IL-6 receptor activity and EMT phenotype, and tumor-initiating ability. Moreover, LYF-11 is a potential compound for breast cancer therapy by targeting JAK2/STAT3 signaling pathway.

Methods

MCF-7 cells treated with different concentrations (10-50 ng/ml) of IL-6 for 24 and 48 h. Western blotting, flow cytometry, and cell migration assay were used to test whether IL-6 promoted tumor-initiating ability in MCF-7 cells.

Results

In this study, we found that the induction of EMT by IL-6 resulted in the acquisition of mesenchymal traits and the increase of tumor-initiating ability in MCF-7 cells. Moreover, we found that 2-phenylnaphthy-ridin-4-one derivatives were able to repress IL-6 induced EMT phenotype and tumor-initiating ability. Among these deriveratives, LYF-11 possessed the most potential inhibitory activity. LYF-11 effectively inhibited IL-6-induced EMT phenotype and tumor-initiating ability via the inhibition of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。