Silencing of circular RNA circPDE5A suppresses neuroblastoma progression by targeting the miR-362-5p/NOL4L axis

环状 RNA circPDE5A 的沉默可通过靶向 miR-362-5p/NOL4L 轴来抑制神经母细胞瘤进展

阅读:7
作者:Yongcun Chen, Liangfeng Lin, Xiaohao Hu, Qiaoyu Li, Min Wu

Conclusions

Our current findings identified that the knockdown of circPDE5A suppressed NB malignant progression at least in part by the regulation of the miR-362-5p/NOL4L axis, providing a novel rationale for developing circPDE5A as a potential target for NB management.

Methods

The expression levels of circPDE5A, miR-362-5p and nucleolar protein 4 like (NOL4L) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTS) assay. Cell migration and invasion were evaluated by transwell assay. The levels of glucose consumption and lactate production were measured using the commercial assay kits. Targeted correlations among circPDE5A, miR-362-5p and NOL4L were confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. In vivo assays were performed to examine the role of circPDE5A in tumour growth in vivo.

Objective

Neuroblastoma (NB) is the most common extra-cranial solid tumour in early childhood. Circular RNAs (circRNAs) have been implicated in the development of NB. The purpose of the current study was to explore the molecular action of circRNA phosphodiesterase 5 A (circPDE5A) in NB malignant progression. Materials and

Results

Our results revealed that circPDE5A was up-regulated in NB tissues and cells. The silencing of circPDE5A suppressed NB cell proliferation, migration, invasion, and glycolysis in vitro and diminished tumour growth in vivo. Moreover, circPDE5A directly targeted miR-362-5p by binding to miR-362-5p. CircPDE5A silencing impeded NB malignant progression in vitro through up-regulating miR-362-5p. Furthermore, NOL4L was a direct target of miR-362-5p, and NOL4L mediated the regulation of miR-362-5p on NB malignant progression in vitro. Additionally, circPDE5A functioned as a regulator of NOL4L expression via targeting miR-362-5p. Conclusions: Our current findings identified that the knockdown of circPDE5A suppressed NB malignant progression at least in part by the regulation of the miR-362-5p/NOL4L axis, providing a novel rationale for developing circPDE5A as a potential target for NB management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。