Signal Transduction of Transient Receptor Potential TRPM8 Channels: Role of PIP5K, Gq-Proteins, and c-Jun

瞬时受体电位 TRPM8 通道的信号转导:PIP5K、Gq 蛋白和 c-Jun 的作用

阅读:9
作者:Gerald Thiel, Oliver G Rössler

Abstract

Transient receptor potential melastatin-8 (TRPM8) is a cation channel that is activated by cold and "cooling agents" such as menthol and icilin, which induce a cold sensation. The stimulation of TRPM8 activates an intracellular signaling cascade that ultimately leads to a change in the gene expression pattern of the cells. Here, we investigate the TRPM8-induced signaling pathway that links TRPM8 channel activation to gene transcription. Using a pharmacological approach, we show that the inhibition of phosphatidylinositol 4-phosphate 5 kinase α (PIP5K), an enzyme essential for the biosynthesis of phosphatidylinositol 4,5-bisphosphate, attenuates TRPM8-induced gene transcription. Analyzing the link between TRPM8 and Gq proteins, we show that the pharmacological inhibition of the βγ subunits impairs TRPM8 signaling. In addition, genetic studies show that TRPM8 requires an activated Gα subunit for signaling. In the nucleus, the TRPM8-induced signaling cascade triggers the activation of the transcription factor AP-1, a complex consisting of a dimer of basic region leucine zipper (bZIP) transcription factors. Here, we identify the bZIP protein c-Jun as an essential component of AP-1 within the TRPM8-induced signaling cascade. In summary, with PIP5K, Gq subunits, and c-Jun, we identified key molecules in TRPM8-induced signaling from the plasma membrane to the nucleus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。