The anti-inflammatory effects of 15-HETE on osteoarthritis during treadmill exercise

15-HETE 对跑步机运动期间骨关节炎的抗炎作用

阅读:10
作者:Yicheng Tian, Jian Gou, He Zhang, Jinghan Lu, Zhuangzhuang Jin, Shuangshuo Jia, Lunhao Bai

Aims

Investigate the involvement of 15-hydroxyeicosatetraenoic acid (15-HETE), an anti-inflammatory molecule, on the beneficial effects of exercise therapy for osteoarthritis (OA). Main

Methods

15-HETE (10 μM, twice a week) and monosodium iodoacetate (MIA) (1 mg) were injected into rat knee joints. Treadmill exercise was applied on OA rat. Primary rat chondrocytes were treated with 15-HETE, LY294002 and interleukin (IL)-1β. Rats undergo a 1 hour single session treadmill exercise once. 15-HETE levels in the knee joint were evaluated using ELISA after a single session of treadmill exercise on healthy and OA rats. Matrix metalloproteinase (MMP)3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5, p-Akt, Akt, and collagen type 2 (COL2) expression were evaluated using RT-PCR and western blotting. OA degree was evaluated using X-ray, scored by Osteoarthritis Research Society International (OARSI) and Mankin scores. COL2 and MMP-13 expression in articular was evaluated using immunohistochemistry. Key findings: Medium intensity exercise alleviated OA. 15-HETE levels after exercise was increased. 15-HETE inhibited IL-1β-induced inflammation in primary chondrocytes and increased p-Akt levels. LY294002 blocked the effect of 15-HETE in vitro. Finally, 15-HETE alleviated cartilage damage, inhibited MMP-13 expression, and increased COL2 expression in joint cartilage tissue. Significance: Treadmill exercise alleviates OA and increases 15-HETE levels in the knee joint, which suppresses inflammation in chondrocytes via PI3k-Akt signalling in vitro and in vivo.

Significance

Treadmill exercise alleviates OA and increases 15-HETE levels in the knee joint, which suppresses inflammation in chondrocytes via PI3k-Akt signalling in vitro and in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。