MicroRNA-411 Inhibits Cervical Cancer Progression by Directly Targeting STAT3

MicroRNA-411 通过直接靶向 STAT3 来抑制宫颈癌进展

阅读:10
作者:Dan Shan, Yumin Shang, Tongxiu Hu

Abstract

Cervical cancer is the third most common gynecological cancer and the fourth leading cause of cancer-related deaths in women around the world. Substantial evidence has demonstrated that microRNA (miRNA) expression is disordered in many malignant tumors. The dysregulation of miRNAs has been suggested to be involved in the tumorigenesis and tumor development of cervical cancer. Therefore, identification of miRNAs and their biological roles and targets involved in tumor pathology would provide valuable insight into the diagnosis and treatment of patients with cervical cancer. MicroRNA-411 (miR-411) has been reported to play an important role in several types of human cancer. However, the expression level, role, and underlying molecular mechanisms of miR-411 in cervical cancer remain unclear. Therefore, the objectives of this study were to investigate the expression pattern and clinical significance of miR-411 in cervical cancer and to evaluate its role and underlying mechanisms in this disease. In this study, we confirmed that the expression of miR-411 was significantly downregulated in both cervical cancer tissues and cell lines. Low expression of miR-411 was associated with tumor size, FIGO stage, lymph node metastasis, and distant metastasis. Additionally, miR-411 overexpression inhibited cell proliferation and invasion in cervical cancer. Furthermore, signal transducer and activator of transcription 3 (STAT3) was identified as a direct target of miR-411 in this disease. In clinical samples, miR-411 expression levels were inversely correlated with STAT3, which was significantly upregulated in cervical cancer. Restored STAT3 expression abolished the tumor-suppressing effects of miR-411 overexpression on the proliferation and invasion of cervical cancer cells. In conclusion, our data demonstrated that miR-411 inhibited cervical cancer progression by directly targeting STAT3 and may represent a novel potential therapeutic target and prognostic marker for patients with this disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。