Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution

以 100 微米空间分辨率对组织切片中的 2000 多种蛋白质进行自动质谱成像

阅读:7
作者:Paul D Piehowski, Ying Zhu, Lisa M Bramer, Kelly G Stratton, Rui Zhao, Daniel J Orton, Ronald J Moore, Jia Yuan, Hugh D Mitchell, Yuqian Gao, Bobbie-Jo M Webb-Robertson, Sudhansu K Dey, Ryan T Kelly, Kristin E Burnum-Johnson

Abstract

Biological tissues exhibit complex spatial heterogeneity that directs the functions of multicellular organisms. Quantifying protein expression is essential for elucidating processes within complex biological assemblies. Imaging mass spectrometry (IMS) is a powerful emerging tool for mapping the spatial distribution of metabolites and lipids across tissue surfaces, but technical challenges have limited the application of IMS to the analysis of proteomes. Methods for probing the spatial distribution of the proteome have generally relied on the use of labels and/or antibodies, which limits multiplexing and requires a priori knowledge of protein targets. Past efforts to make spatially resolved proteome measurements across tissues have had limited spatial resolution and proteome coverage and have relied on manual workflows. Here, we demonstrate an automated approach to imaging that utilizes label-free nanoproteomics to analyze tissue voxels, generating quantitative cell-type-specific images for >2000 proteins with 100-µm spatial resolution across mouse uterine tissue sections preparing for blastocyst implantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。