Long term rescue of Alzheimer's deficits in vivo by one-time gene-editing of App C-terminus

通过一次性基因编辑 App C 端来长期挽救阿尔茨海默病的体内缺陷

阅读:5
作者:Brent D Aulston, Kirstan Gimse, Hannah O Bazick, Eniko A Kramar, Donald P Pizzo, Leonardo A Parra-Rivas, Jichao Sun, Kristen Branes-Guerrero, Nidhi Checka, Neda Bagheri, Nihal Satyadev, Jared Carlson-Stevermer, Takashi Saito, Takaomi C Saido, Anjon Audhya, Marcelo A Wood, Mark J Zylka, Krishanu Saha

Abstract

Gene-editing technologies promise to create a new class of therapeutics that can achieve permanent correction with a single intervention. Besides eliminating mutant alleles in familial disease, gene-editing can also be used to favorably manipulate upstream pathophysiologic events and alter disease-course in wider patient populations, but few such feasible therapeutic avenues have been reported. Here we use CRISPR-Cas9 to edit the last exon of amyloid precursor protein (App), relevant for Alzheimer's disease (AD). Our strategy effectively eliminates an endocytic (YENPTY) motif at APP C-terminus, while preserving the N-terminus and compensatory APP-homologues. This manipulation favorably alters events along the amyloid-pathway - inhibiting toxic APP-β-cleavage fragments (including Aβ) and upregulating neuroprotective APP-α-cleavage products. AAV-driven editing ameliorates neuropathologic, electrophysiologic, and behavioral deficits in an AD knockin mouse model. Effects persist for many months, and no abnormalities are seen in WT mice even after germline App-editing; underlining overall efficacy and safety. Pathologic alterations in the glial-transcriptome of App-KI mice, as seen by single nuclei RNA-sequencing (sNuc-Seq), are also normalized by App C-terminus editing. Our strategy takes advantage of innate transcriptional rules that render terminal exons insensitive to nonsense-decay, and the upstream manipulation is expected to be effective for all forms of AD. These studies offer a path for a one-time disease-modifying treatment for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。