Pulmonary Fibrosis Ferret Model Demonstrates Sustained Fibrosis, Restrictive Physiology, and Aberrant Repair

肺纤维化雪貂模型表现出持续性纤维化、限制性生理和异常修复

阅读:5
作者:Jacelyn E Peabody Lever, Qian Li, Nikoleta Pavelkova, Shah S Hussain, Sayan Bakshi, Janna Q Ren, Luke I Jones, Jared Kennemur, Mason Weupe, Javier Campos-Gomez, Liping Tang, Jeremie M P Lever, Dezhi Wang, Denise D Stanford, Jeremy Foote, Kevin S Harrod, Harrison Kim, Scott E Phillips, Steven M Rowe

Conclusions

Bleomycin-exposed ferrets exhibit sustained fibrosis through 22 wks and have pathologic features of IPF not found in rodents. Ferrets exhibited proximalization of the distal airways and other pathologic features characteristic of human IPF. MUC5B expression through native cell types may play a key role in promoting airway remodeling and lung injury in IPF.

Methods

Bleomycin (5U/kg) or saline-control was micro-sprayed intratracheally then wild-type ferrets were evaluated through 22 wks. Clinical phenotype was assessed with lung function. Fibrosis was assessed with µCT imaging and comparative histology with Ashcroft scoring. Airway remodeling was assessed with histology and quantitative immunofluorescence.

Results

Bleomycin ferrets exhibited sustained restrictive physiology including decreased inspiratory capacity, decreased compliance, and shifted Pressure-Volume loops through 22 wks. Volumetric µCT analysis revealed increased opacification of the lung bleomycin-ferrets. Histology showed extensive fibrotic injury that matured over time and MUC5B-positive cystic structures in the distal lung suggestive of honeycombing. Bleomycin ferrets had increased proportion of small airways that were double-positive for CCSP and alpha-tubulin compared to controls, indicating an aberrant 'proximalization' repair phenotype. Notably, this aberrant repair was associated with extent of fibrotic injury at the airway level. Conclusions: Bleomycin-exposed ferrets exhibit sustained fibrosis through 22 wks and have pathologic features of IPF not found in rodents. Ferrets exhibited proximalization of the distal airways and other pathologic features characteristic of human IPF. MUC5B expression through native cell types may play a key role in promoting airway remodeling and lung injury in IPF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。