Epac1 inhibition ameliorates pathological angiogenesis through coordinated activation of Notch and suppression of VEGF signaling

Epac1 抑制可通过协同激活 Notch 和抑制 VEGF 信号改善病理性血管生成

阅读:9
作者:Hua Liu, Fang C Mei, Wenli Yang, Hui Wang, Eitan Wong, Jingjing Cai, Emma Toth, Pei Luo, Yue-Ming Li, Wenbo Zhang, Xiaodong Cheng

Abstract

In this study, we investigated the roles of Epac1 in pathological angiogenesis and its potential as a novel therapeutic target for the treatment of vasoproliferative diseases. Genetic deletion of Epac1 ameliorated pathological angiogenesis in mouse models of oxygen-induced retinopathy (OIR) and carotid artery ligation. Moreover, genetic deletion or pharmacological inhibition of Epac1 suppressed microvessel sprouting from ex vivo aortic ring explants. Mechanistic studies revealed that Epac1 acted as a previously unidentified inhibitor of the γ-secretase/Notch signaling pathway via interacting with γ-secretase and regulating its intracellular trafficking while enhancing vascular endothelial growth factor signaling to promote pathological angiogenesis. Pharmacological administration of an Epac-specific inhibitor suppressed OIR-induced neovascularization in wild-type mice, recapitulating the phenotype of genetic Epac1 knockout. Our results demonstrate that Epac1 signaling is critical for the progression of pathological angiogenesis but not for physiological angiogenesis and that the newly developed Epac-specific inhibitors are effective in combating proliferative retinopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。