FGF23 Regulates Wnt/β-Catenin Signaling-Mediated Osteoarthritis in Mice Overexpressing High-Molecular-Weight FGF2

FGF23 调节高分子量 FGF2 过表达小鼠的 Wnt/β-Catenin 信号介导的骨关节炎

阅读:8
作者:Patience Meo Burt, Liping Xiao, Marja M Hurley

Abstract

Although humans with X-linked hypophosphatemia (XLH) and the Hyp mouse, a murine homolog of XLH, are known to develop degenerative joint disease, the exact mechanism that drives the osteoarthritis (OA) phenotype remains unclear. Mice that overexpress high-molecular-weight fibroblast growth factor (FGF) 2 isoforms (HMWTg mice) phenocopy both XLH and Hyp, including OA with increased FGF23 production in bone and serum. Because HMWTg cartilage also has increased FGF23 and there is cross-talk between FGF23-Wnt/β-catenin signaling, the purpose of this study was to determine if OA observed in HMWTg mice is due to FGF23-mediated canonical Wnt signaling in chondrocytes, given that both pathways are implicated in OA pathogenesis. HMWTg OA joints had decreased Dkk1, Sost, and Lrp6 expression with increased Wnt5a, Wnt7b, Lrp5, Axin2, phospho-GSK3β, Lef1, and nuclear β-catenin, as indicated by immunohistochemistry or quantitative PCR analysis. Chondrocytes from HMWTg mice had enhanced alcian blue and alkaline phosphatase staining as well as increased FGF23, Adamts5, Il-1β, Wnt7b, Wnt16, and Wisp1 gene expression and phospho-GSK3β protein expression as indicated by Western blot, compared with chondrocytes of vector control and chondrocytes from mice overexpressing the low-molecular-weight isoform, which were protected from OA. Canonical Wnt inhibitor treatment rescued some of those parameters in HMWTg chondrocytes, seemingly delaying the initially accelerated chondrogenic differentiation. FGF23 neutralizing antibody treatment was able to partly ameliorate OA abnormalities in subchondral bone and reduce degradative/hypertrophic chondrogenic marker expression in HMWTg joints in vivo. These results demonstrate that osteoarthropathy of HMWTg is at least partially due to FGF23-modulated Wnt/β-catenin signaling in chondrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。