Elastin-Derived Peptides Promote Abdominal Aortic Aneurysm Formation by Modulating M1/M2 Macrophage Polarization

弹性蛋白衍生肽通过调节 M1/M2 巨噬细胞极化促进腹主动脉瘤形成

阅读:8
作者:Matthew A Dale, Wanfen Xiong, Jeffrey S Carson, Melissa K Suh, Andrew D Karpisek, Trevor M Meisinger, George P Casale, B Timothy Baxter

Abstract

Abdominal aortic aneurysm is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix degradation. Damage to elastin in the extracellular matrix results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known. Proinflammatory M1 macrophages initially are recruited to sites of injury, but, if their effects are prolonged, they can lead to chronic inflammation that prevents normal tissue repair. Conversely, anti-inflammatory M2 macrophages reduce inflammation and aid in wound healing. Thus, a proper M1/M2 ratio is vital for tissue homeostasis. Abdominal aortic aneurysm tissue reveals a high M1/M2 ratio in which proinflammatory cells and their associated markers dominate. In the current study, in vitro treatment of bone marrow-derived macrophages with EDPs induced M1 macrophage polarization. By using C57BL/6 mice, Ab-mediated neutralization of EDPs reduced aortic dilation, matrix metalloproteinase activity, and proinflammatory cytokine expression at early and late time points after aneurysm induction. Furthermore, direct manipulation of the M1/M2 balance altered aortic dilation. Injection of M2-polarized macrophages reduced aortic dilation after aneurysm induction. EDPs promoted a proinflammatory environment in aortic tissue by inducing M1 polarization, and neutralization of EDPs attenuated aortic dilation. The M1/M2 imbalance is vital to aneurysm formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。