Reconstructing codependent cellular cross-talk in lung adenocarcinoma using REMI

使用 REMI 重建肺腺癌中的相互依赖细胞串扰

阅读:4
作者:Alice Yu, Yuanyuan Li, Irene Li, Michael G Ozawa, Christine Yeh, Aaron E Chiou, Winston L Trope, Jonathan Taylor, Joseph Shrager, Sylvia K Plevritis

Abstract

Cellular cross-talk in tissue microenvironments is fundamental to normal and pathological biological processes. Global assessment of cell-cell interactions (CCIs) is not yet technically feasible, but computational efforts to reconstruct these interactions have been proposed. Current computational approaches that identify CCI often make the simplifying assumption that pairwise interactions are independent of one another, which can lead to reduced accuracy. We present REMI (REgularized Microenvironment Interactome), a graph-based algorithm that predicts ligand-receptor (LR) interactions by accounting for LR dependencies on high-dimensional, small-sample size datasets. We apply REMI to reconstruct the human lung adenocarcinoma (LUAD) interactome from a bulk flow-sorted RNA sequencing dataset, then leverage single-cell transcriptomics data to increase the cell type resolution and identify LR prognostic signatures among tumor-stroma-immune subpopulations. We experimentally confirmed colocalization of CTGF:LRP6 among malignant cell subtypes as an interaction predicted to be associated with LUAD progression. Our work presents a computational approach to reconstruct interactomes and identify clinically relevant CCIs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。