Serine-arginine-rich protein kinase-1 inhibition for the treatment of diabetic retinopathy

富含丝氨酸-精氨酸的蛋白激酶-1抑制剂用于治疗糖尿病视网膜病变

阅读:5
作者:Naseeb K Malhi, Claire L Allen, Elizabeth Stewart, Katherine L Horton, Federica Riu, Jennifer Batson, Winfried Amoaku, Jonathan C Morris, Kenton P Arkill, David O Bates

Abstract

Angiogenic VEGF isoforms are upregulated in diabetic retinopathy (DR), driving pathological growth and fluid leakage. Serine-arginine-rich protein kinase-1 (SRPK1) regulates VEGF splicing, and its inhibition blocks angiogenesis. We tested the hypothesis that SRPK1 is activated in diabetes, and an SRPK1 inhibitor (SPHINX31) switches VEGF splicing in DR and prevents increased vascular permeability into the retina. SRPK1 was activated by high glucose (HG), in a PKC-dependent manner, and was blocked by SPHINX31. HG induced release of SRSF1 from the nuclear speckles, which was also SRPK1 dependent, and increased retinal pigment epithelial (RPE) monolayer admittance, which was reversed by SRPK1 inhibition (P < 0.05). Diabetes increased retinal permeability and thickness after 14 days which was blocked by treatment with SPHINX31 eye drops (P < 0.0001). These results show that SRPK1 inhibition, administered as an eye drop, protected the retinal barrier from hyperglycemia-associated loss of integrity in RPE cells in vitro and in diabetic rats in vivo. A clinical trial of another SRPK1 inhibitor has now been initiated in patients with diabetic macular edema.NEW & NOTEWORTHY VEGF-A165b splicing is induced by hyperglycemia through PKC-mediated activation of SRPK1 in RPE cells, increasing their permeability and angiogenic capability. SRPK1 inhibitors can be given as eye drops to reduce retinal permeability and edema in diabetic retinopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。