Low electric fields induce ligand-independent activation of EGF receptor and ERK via electrochemical elevation of H(+) and ROS concentrations

低电场通过电化学方式提高H(+)和ROS浓度,诱导EGF受体和ERK的配体非依赖性活化

阅读:8
作者:Tami Wolf-Goldberg, Alexander Barbul, Nadav Ben-Dov, Rafi Korenstein

Abstract

Physiological electric fields are involved in many biological processes and known to elicit their effects during long exposures ranging from a few hours to days. Following exposure to electric fields of physiological amplitude, epidermal growth factor receptor (EGFR) was demonstrated to be redistributed and upregulated with further intracellular signaling such as the MAPK signaling cascade. In our study we demonstrated EGFR activation and signaling induced by short train of pulsed low electric field (LEF) (10V/cm, pulse-width 180μs, 500Hz, 2min) in serum-free medium, following 24-hour starvation, and in the absence of exogenous EGF ligand, suggesting a ligand-independent pathway for EGFR activation. This ligandless activation was further confirmed by using neutralizing antibodies (LA1) that block the EGFR ligand-binding site. EGFR activation was found to be EGFR kinase dependent, yet with no dimerization following exposure to LEF. ERK activation was found to be mainly a result of EGFR downstream signaling though it partially occurred via EGFR-independent way. We demonstrate that reactive oxygen species and especially decrease in pH generated during exposure to LEF are involved in EGFR ligandless activation. We propose a possible mechanism for the LEF-induced EGFR ligand-independent activation and show activation of other receptor tyrosine kinases following exposure to LEF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。