Sterol methyltransferases in uncultured bacteria complicate eukaryotic biomarker interpretations

未培养细菌中的甾醇甲基转移酶使真核生物标志物的解释变得复杂

阅读:7
作者:Malory O Brown, Babatunde O Olagunju, José-Luis Giner, Paula V Welander

Abstract

Sterane molecular fossils are broadly interpreted as eukaryotic biomarkers, although diverse bacteria also produce sterols. Steranes with side-chain methylations can act as more specific biomarkers if their sterol precursors are limited to particular eukaryotes and are absent in bacteria. One such sterane, 24-isopropylcholestane, has been attributed to demosponges and potentially represents the earliest evidence for animals on Earth, but enzymes that methylate sterols to give the 24-isopropyl side-chain remain undiscovered. Here, we show that sterol methyltransferases from both sponges and yet-uncultured bacteria function in vitro and identify three methyltransferases from symbiotic bacteria each capable of sequential methylations resulting in the 24-isopropyl sterol side-chain. We demonstrate that bacteria have the genomic capacity to synthesize side-chain alkylated sterols, and that bacterial symbionts may contribute to 24-isopropyl sterol biosynthesis in demosponges. Together, our results suggest bacteria should not be dismissed as potential contributing sources of side-chain alkylated sterane biomarkers in the rock record.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。