Deciphering heterogeneous populations of migrating cells based on the computational assessment of their dynamic properties

根据动态特性的计算评估来解释异质迁移细胞群

阅读:5
作者:Aymeric Ferreira, Cedric Bressan, Simon V Hardy, Armen Saghatelyan

Abstract

Neuronal migration is a highly dynamic process, and multiple cell movement metrics can be extracted from time-lapse imaging datasets. However, these parameters alone are often insufficient to evaluate the heterogeneity of neuroblast populations. We developed an analytical pipeline based on reducing the dimensions of the dataset by principal component analysis (PCA) and determining sub-populations using k-means, supported by the elbow criterion method and validated by a decision tree algorithm. We showed that neuroblasts derived from the same adult neural stem cell (NSC) lineage as well as across different lineages are heterogeneous and can be sub-divided into different clusters based on their dynamic properties. Interestingly, we also observed overlapping clusters for neuroblasts derived from different NSC lineages. We further showed that genetic perturbations or environmental stimuli affect the migratory properties of neuroblasts in a sub-cluster-specific manner. Our data thus provide a framework for assessing the heterogeneity of migrating neuroblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。