The hexosamine biosynthetic pathway rescues lysosomal dysfunction in Parkinson's disease patient iPSC derived midbrain neurons

己糖胺生物合成途径挽救帕金森病患者 iPSC 衍生的中脑神经元的溶酶体功能障碍

阅读:4
作者:Willayat Y Wani, Friederike Zunke, Nandkishore R Belur, Joseph R Mazzulli

Abstract

Disrupted glucose metabolism and protein misfolding are key characteristics of age-related neurodegenerative disorders including Parkinson's disease, however their mechanistic linkage is largely unexplored. The hexosamine biosynthetic pathway utilizes glucose and uridine-5'-triphosphate to generate N-linked glycans required for protein folding in the endoplasmic reticulum. Here we find that Parkinson's patient midbrain cultures accumulate glucose and uridine-5'-triphosphate, while N-glycan synthesis rates are reduced. Impaired glucose flux occurred by selective reduction of the rate-limiting enzyme, GFPT2, through disrupted signaling between the unfolded protein response and the hexosamine pathway. Failure of the unfolded protein response and reduced N-glycosylation caused immature lysosomal hydrolases to misfold and accumulate, while accelerating glucose flux through the hexosamine pathway rescued hydrolase function and reduced pathological α-synuclein. Our data indicate that the hexosamine pathway integrates glucose metabolism with lysosomal activity, and its failure in Parkinson's disease occurs by uncoupling of the unfolded protein response-hexosamine pathway axis. These findings offer new methods to restore proteostasis by hexosamine pathway enhancement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。