Xanthine Oxidase Inhibitor Allopurinol Prevents Oxidative Stress-Mediated Atrial Remodeling in Alloxan-Induced Diabetes Mellitus Rabbits

黄嘌呤氧化酶抑制剂别嘌呤醇可预防氧化应激介导的糖尿病兔心房重塑

阅读:3
作者:Yajuan Yang, Jianping Zhao, Jiuchun Qiu, Jian Li, Xue Liang, Zhiwei Zhang, Xiaowei Zhang, Huaying Fu, Panagiotis Korantzopoulos, Konstantinos P Letsas, Gary Tse, Guangping Li, Tong Liu

Background

There are several mechanisms, including inflammation, oxidative stress and abnormal calcium homeostasis, involved in the pathogenesis of atrial fibrillation. In diabetes mellitus (DM), increased oxidative stress may be attributable to higher xanthine oxidase activity. In this study, we examined the relationship between oxidative stress and atrial electrical and structural remodeling, and calcium handling abnormalities, and the potential beneficial effects of the xanthine oxidase inhibitor allopurinol upon these pathological changes.

Conclusions

Allopurinol, via its antioxidant effects, reduces atrial mechanical, structural, ion channel remodeling and mitochondrial synthesis abnormalities induced by DM-related increases in oxidative stress.

Results

Ninety rabbits were randomly and equally divided into 3 groups: control, DM, and allopurinol-treated DM group. Echocardiographic and hemodynamic assessments were performed in vivo. Serum and tissue markers of oxidative stress and atrial fibrosis, including the protein expression were examined. Atrial interstitial fibrosis was evaluated by Masson trichrome staining. ICaL was measured from isolated left atrial cardiomyocytes using voltage-clamp techniques. Confocal microscopy was used to detect intracellular calcium transients. The Ca2+ handling protein expression was analyzed by Western blotting. Mitochondrial-related proteins were analyzed as markers of mitochondrial function. Compared with the control group, rabbits with DM showed left ventricular hypertrophy, increased atrial interstitial fibrosis, oxidative stress and fibrosis markers, ICaL and intracellular calcium transient, and atrial fibrillation inducibility. These abnormalities were alleviated by allopurinol treatment. Conclusions: Allopurinol, via its antioxidant effects, reduces atrial mechanical, structural, ion channel remodeling and mitochondrial synthesis abnormalities induced by DM-related increases in oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。