A novel role for GalNAc-T2 dependent glycosylation in energy homeostasis

GalNAc-T2 依赖性糖基化在能量稳态中的新作用

阅读:5
作者:Cristy R C Verzijl, Federico Oldoni, Natalia Loaiza, Justina C Wolters, Antoine Rimbert, E Tian, Weiming Yang, Dicky Struik, Marieke Smit, Niels J Kloosterhuis, Amy J Fernandez, Nadine L Samara, Kelly G Ten Hagen, Kruti Dalal, Aliona Chernish, Peggy McCluggage, Lawrence A Tabak, Johan W Jonker, Jan

Conclusions

This study identifies a novel role for GALNT2 in energy homeostasis, and our findings suggest that the local effects of GalNAc-T2 are mediated through posttranslational modification of the insulin receptor.

Methods

GWAS data from the UK Biobank was used to study variation in the GALNT2 locus beyond changes in high-density lipoprotein metabolism. Experimental data were obtained through studies in Galnt2-/- mice and wild-type littermates on both control and high-fat diet.

Objective

GALNT2, encoding polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2), was initially discovered as a regulator of high-density lipoprotein metabolism. GalNAc-T2 is known to exert these effects through post-translational modification, i.e., O-linked glycosylation of secreted proteins with established roles in plasma lipid metabolism. It has recently become clear that loss of GALNT2 in rodents, cattle, nonhuman primates, and humans should be regarded as a novel congenital disorder of glycosylation that affects development and body weight. The role of GALNT2 in metabolic abnormalities other than plasma lipids, including insulin sensitivity and energy homeostasis, is poorly understood.

Results

First, we uncovered associations between GALNT2 gene variation, adiposity, and body mass index in humans. In mice, we identify the insulin receptor as a novel substrate of GalNAc-T2 and demonstrate that Galnt2-/- mice exhibit decreased adiposity, alterations in insulin signaling and a shift in energy substrate utilization in the inactive phase. Conclusions: This study identifies a novel role for GALNT2 in energy homeostasis, and our findings suggest that the local effects of GalNAc-T2 are mediated through posttranslational modification of the insulin receptor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。