GSK1904529A, a Potent IGF-IR Inhibitor, Reverses MRP1-Mediated Multidrug Resistance

GSK1904529A 是一种有效的 IGF-IR 抑制剂,可逆转 MRP1 介导的多药耐药性

阅读:4
作者:Pranav Gupta, Meina Xie, Silpa Narayanan, Yi-Jun Wang, Xiu-Qi Wang, Timothy Yuan, Ziyue Wang, Dong-Hua Yang, Zhe-Sheng Chen

Abstract

Overexpression of multidrug-resistant efflux transporters is one of the major causes of chemotherapy failure. MRP1, a 190 kDa efflux transporter, confers resistance to a wide of range of chemotherapeutic drugs. Here we study the cellular effects of GSK1904529A in reversing MRP1-mediated drug resistance. Cytotoxicity of GSK1904529A was determined by MTT assay. Reversal effects of GSK1904529A in combination with MRP1 substrates were determined. The intracellular accumulation and efflux of MRP1 substrate was measured by scintillation counter and protein expression was determined by Western blotting analysis. Cell cycle effects of GSK1904529A in combination with MRP1 substrates were determined by flow cytometric analysis. GSK1904529A, at non-toxic concentrations, enhanced the cytotoxicity of MRP1 substrates in HEK293/MRP1 cells. Furthermore, GSK1904529A increased the intracellular accumulation of [3 H]-vinblastine by inhibiting the efflux function of MRP1. GSK1904529A did not alter the expression level of MRP1, induced a G0/G1 phase cell cycle arrest. Our results indicated that GSK1904529A significantly increased the sensitivity of MRP1 overexpressing cells to chemotherapeutic agents. Furthermore, GSK1904529A enhanced the efficacy of chemotherapeutic drugs that are substrates of MRP1. J. Cell. Biochem. 118: 3260-3267, 2017. © 2017 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。