Fabrication of bFGF/polydopamine-loaded PEEK implants for improving soft tissue integration by upregulating Wnt/β-catenin signaling

制造载有 bFGF/聚多巴胺的 PEEK 植入物,通过上调 Wnt/β-catenin 信号传导来改善软组织整合

阅读:8
作者:Xiaohu Wang, Ning Ma, Li Feng, Mingkui Shen, Yaqi Zhou, Xinan Zhang, Ruichao Huang, Li Zhou, Shanfeng Ji, Yongli Lou, Zhi Zhu

Abstract

The difficulties associated with polyetheretherketone (PEEK) implants and soft tissue integration for craniomaxillofacial bone repair have led to a series of complications that limit the clinical benefits. In this study, 3D printed multi-stage microporous PEEK implants coated with bFGF via polydopamine were fabricated to enhance PEEK implant-soft tissue integration. Multistage microporous PEEK scaffolds prepared by sulfonation of concentrated sulfuric acid were coated with polydopamine, and then used as templates for electrophoretic deposition of bFGF bioactive factors. Achieving polydopamine and bFGF sustained release, the composite PEEK scaffolds possessed good mechanical properties, hydrophilicity, protein adhesion properties. The in vitro results indicated that bFGF/polydopamine-loaded PEEK exhibited good biocompatibility to rabbit embryonic fibroblasts (REF) by promoting cell proliferation, adhesion, and migration. Ribonucleic acid sequencing (RNA-seq) revealed that bFGF/polydopamine-loaded PEEK implants significantly upregulated the expression of genes and proteins associated with soft tissue integration and activated Wnt/β-catenin signaling in biological processes, but related expression of genes and proteins was significantly downregulated when the Wnt/β-catenin signaling was inhibited. Furthermore, in vivo bFGF/polydopamine-loaded PEEK implants exhibited excellent performance in improving the growth and adhesion of the surrounding soft tissue. In summary, bFGF/polydopamine-loaded PEEK implants possess soft tissue integration properties by activating the Wnt/β-catenin signaling, which have a potential translational clinical application in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。