Directional droplet bouncing on a moving superhydrophobic surface

定向液滴在移动的超疏水表面上弹跳

阅读:5
作者:Meng Wang, Yanzhao Shi, Shun Wang, Huanlin Xu, Hui Zhang, Min Wei, Xiaopeng Wang, Wanxi Peng, Hang Ding, Meirong Song

Abstract

Droplets directionally bouncing off moving superhydrophobic solid surfaces are universal in nature and are crucial in many biological, sustainable, environmental, and engineering applications. However, their underlying physics and regulation strategies remain relatively unknown. This paper demonstrates that the maximum directional acceleration of a post-impact droplet mainly occurs in the spreading stage and that the orientational velocity of the droplet mainly originates in the early impingement process. Furthermore, it clarifies the underlying physics based on momentum transfer process imposed by the boundary layer of impacts and proposes a strategy for regulating the directional droplet velocity using a comprehensive formula. Finally, it shows that directional bouncing reduces the flight momentum of a small flying device by 10%-22%, and the experimental values agree closely with the predicted values. This study reveals the droplet bounce orientation mechanism imposed by moving substrates, provides manipulation methods, and makes positive and meaningful discussions of practical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。