Cellular stress amplifies TLR3/4-induced CXCL1/2 gene transcription in mononuclear phagocytes via RIPK1

细胞应激通过 RIPK1 扩增单核吞噬细胞中 TLR3/4 诱导的 CXCL1/2 基因转录

阅读:6
作者:Chenyang Zhao, Paul G Pavicic Jr, Shyamasree Datta, Dongxu Sun, Michael Novotny, Thomas A Hamilton

Abstract

The impact of environmental stressors on the magnitude of specific chemokine gene expression was examined in mouse bone marrow-derived macrophages stimulated through various TLRs. Levels of TLR-stimulated CXCL1 and CXCL2 but not CXCL10 or CCL5 mRNAs were selectively enhanced (>10-fold) in stressed macrophages. The amplification was also manifested for other proinflammatory cytokines, including TNF-α, IL-1α, and IL-6. Responses through TLR3 and TLR4 exhibited the greatest sensitivity, reflecting a requirement for Toll/IL-IR domain-containing adaptor-inducing IFN-β (TRIF), the adaptor protein selectively associated with these TLRs. IFN regulatory factor 3, a transcription factor that is downstream of TLR4/TRIF signaling, was not required for sensitivity to stress-induced chemokine amplification. c/EBP homologous protein and X box binding protein 1 have been reported to enhance inflammatory cytokine responses but are not required for amplification of TLR3/4-induced CXCL1 expression. Rather, receptor-interacting protein kinase 1, a kinase also linked with TLR3/4/TRIF signaling, is required and involves a stress-dependent increase in its abundance and ubiquitination. Whereas NF-κB activation is necessary for TLR-induced chemokine gene transcription, this factor does not appear to be the primary mechanistic target of environmental stress. The application of stress also enhanced chemokine expression in macrophages infiltrating the peritoneal cavity but was not observed in the resident peritoneal cells or in the liver. These findings identify novel mechanisms for modulating the magnitude and duration of selective TLR-induced chemokine and cytokine gene expression and further establish the importance of cell stress pathways in coordinating the outcomes of cellular and tissue injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。