Preconcentration mechanism of trivalent lanthanum on eQCM electrodes in the presence of α-hydroxy isobutyric acid

α-羟基异丁酸存在下三价镧在 eQCM 电极上的预富集机理

阅读:6
作者:Adan Schafer Medina, Nathalie A Wall, Cornelius F Ivory, Sue B Clark, Haluk Beyenal

Abstract

Electroprecipitation can be used to preconcentrate lanthanum on carbon electrode surfaces. The use of complexing ligands is expected to improve the electroprecipitation of lanthanum by protecting La ions in solution from the alkaline region near the electrode surface. However, the electroprecipitation mechanism of La in the presence of a complexing ligand is not known. The goal of this work is to 1) determine the effect of the complexing ligand, α-hydroxy isobutyric acid (HIBA), on the electroprecipitation of La onto the gold electrodes, and 2) identify the changes in the mechanism of accumulation when preconcentrating in the presence of HIBA. We used an electrochemical quartz crystal microbalance (eQCM) and needle type pH microelectrodes to determine pH near the electrode surface in combination with cyclic voltammetry to understand the electroprecipitation mechanism. We used the bi-dentate ligand HIBA as a ligand and found that lanthanum electroprecipitation is hindered in the presence of HIBA. The presence of HIBA also delayed the onset of film formation during a cyclic voltammetric experiment by ~100 mV compared to experiments performed without HIBA. The shift in onset potential is attributed to the buffering action of HIBA (pKa = 3.7) since the shift is not present in subsequent scans. The precipitated film was characterized by scanning electron microscopy, X-ray photoelectron spectrometry, and Auger nanoprobe spectrometry. While we found that La(OH)3 was the predominant chemical state of the film on electrodes in the absence of HIBA, La2O3 was found for films created in the presence of HIBA. Our finding demonstrates that La(OH)3 can be electrodeposited at room temperature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。